Systematic literature searching for evaluation of the accuracy of a new diagnostic test

Chien-Chang Lee MD, ScD
Department of Emergency Medicine, National Taiwan University Hospital
Outline

1. Evaluate the accuracy of a diagnostic test
2. Design of a diagnostic test study
3. Systematic review of diagnostic test studies
4. Quality assessment
5. Interpretation and clinical application
Outline

1. Evaluate the accuracy of a diagnostic test
2. Systematic review of diagnostic test studies
3. Literature search
4. Quality assessment
5. Interpretation
Why we need a diagnostic test?

• We need “information” to make a decision
• “Information” is usually a result from a test

• Medical tests:
 – To screen for a risk factor (screening test)
 – To diagnose a disease (diagnostic test)
 – To estimate a patient’s prognosis (prognostic test)

• When and in whom, a test should be done?
 – When “information” from test result have a value.
Diagnostic test

• Dichotomous
 – DNA SNPs
 – HIV screening test
 – Physical exam, imaging test

• Ordered Categorical Scale
 – Charlson scale
 – Sequential Organ Failure Assessment (SOFA) scale

• Continuous
 – Biochemical tests: serum levels of creatinine, bilirubin or calcium
 – Biomarker tests: serum levels of biomarkers
 – Blood cell counts: WBC, RBC, Platelet count
Evaluate the accuracy of a new test

- Validating tests against a gold standard:
 - New tests should be validated by comparison against an established gold standard in an appropriate subjects
Binary Test Data Structure

<table>
<thead>
<tr>
<th></th>
<th>Case (Reference test positive)</th>
<th>Non-case (Reference test negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Positive</td>
<td>True positive (a)</td>
<td>False positive (b)</td>
</tr>
<tr>
<td>Test Negative</td>
<td>False negative (c)</td>
<td>True negative (d)</td>
</tr>
</tbody>
</table>

- Measure of test performance
 - Sensitivity (true positive rate) $\Rightarrow \frac{a}{a+c}$
 - Specificity (true negative rate) $\Rightarrow \frac{d}{b+d}$
 - Positive predictive value $\Rightarrow \frac{a}{a+b}$
 - Negative predictive value $\Rightarrow \frac{d}{c+d}$
“Clinicians usually struggle with the interpretation of sensitivity and specificity, because positive/negative predictive value is the most straightforward measure ..”
Forward Thinking

Index Test Results → Actual Disease Status

Positive predictive value
Negative predictive value

Influenced by Prevalence of Disease
Not comparable between studies
Reverse Thinking

Index Test Results

Actual Disease Status

Sensitivity
Specificity

Not Influenced by Prevalence of Disease
Comparable between studies
Same test in different populations

PPV low
Sen same

PPV high
Sen same
Determine the cutoff value

Sensitivity and specificity are negatively correlated, depending on the cutoff value selection.
Choice of a cut-off point

- If *false-positive* must be avoided, such as surgical decision, then the cutoff needs to be set to maximize the *specificity*

- If *false-negative* must be avoided, such as diagnosis of myocardial infarction, then the cutoff should be set to maximize the *sensitivity*
ROC curve

SGPT and Hepatitis

<table>
<thead>
<tr>
<th>SGPT cutoff</th>
<th>Sen</th>
<th>Spe</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>95%</td>
<td>15%</td>
</tr>
<tr>
<td>100</td>
<td>80%</td>
<td>30%</td>
</tr>
<tr>
<td>150</td>
<td>70%</td>
<td>50%</td>
</tr>
<tr>
<td>200</td>
<td>60%</td>
<td>70%</td>
</tr>
<tr>
<td>250</td>
<td>30%</td>
<td>85%</td>
</tr>
<tr>
<td>≥300</td>
<td>10%</td>
<td>97%</td>
</tr>
</tbody>
</table>
ROC curve

- Complete description of performance
- Facilitate comparison and combination across studies of the same test
- Guide the choice of thresholds
- Enable comparisons between different non-binary tests
Outline

1. Evaluate the accuracy of a diagnostic test
2. Design of a diagnostic test study
3. Systematic review of diagnostic test studies
4. Quality assessment
5. Interpretation and clinical application
Cross sectional design

Index Test Results

Reference standard

Sen: 67%
Spe: 83%
Case control design

Index Test Results

Reference standard

Sen: 100%
Spe: 100%
Case-control vs. Cross sectional

- **Case-control design**
 - Provide an indication of maximal accuracy of a test
 - Valuable in the technical validation
 - Prevalence or predictive values cannot be estimated
 - Not representative of accuracy in clinical practice

- **Cross sectional design**
 - Provide valid estimates of diagnostic accuracy in the real world settings
 - Prevalence or predictive values cannot be estimated
Reference Standard

Defined patient population

Index Test
Reference Standard

Defined patient population

Index Test

Comparison Test
Reference Standard

Comparison Test 1

Index Test

Comparison Test 2

Defined patient population
Patients presenting to emergency department with chest pain

Cardiologist adjudicated myocardial infarction

Contemporary troponins

High sensitivity Troponin T (Cutoff: limit of detection 5 ng/L)

Dual marker, Copeptin + Troponin
Outline

1. Evaluate the accuracy of a diagnostic test
2. Design of a diagnostic test study
3. Systematic review of diagnostic test studies
4. Quality assessment
5. Interpretation and clinical application
Systematic Review

- Systematic approach
- Minimizing bias and random errors

Comparison with narrative review
- Complete collection evidence
- Transparency of methods allowing replication
- Less subjectivity
Aim

• To investigate whether a test is sufficiently specific or sensitive to fit its role in practice

• To compare the accuracy of two or more diagnostic tests

• To investigate where existing variation in results comes from
Number of diagnostic test systematic reviews searched by PubMed
Systematic Approach

Defining a specific clinical question

Identification of studies

Selection of studies

Clinical Appraisal of evidence
Literature Search

- More difficult than searching for randomized trials

- No indexing term for a diagnostic study

- Medical Subheading (MeSH) terms “sensitivity and specificity” can be used but may miss some studies

- Use broad term and manual screening reference lists
Review question for an efficacy study
P.I.C.O. model

- Population
 - Target population

- Intervention
 - Treatment group

- Comparison
 - Control group

- Outcome
 - Relative risks
Review question for an diagnostic test
P.I.C.O. model

Population
- Target population

Index test
- New diagnostic test of interest

Comparison
- Conventional test for comparison

Outcome
- Accuracy measure: sensitivity or specificity
High Sensitivity Troponin T for Early Diagnosis of Myocardial Infarction

Population
- ED patients with suspected MI

Test
- High Sensitivity Troponin T test

Comparison
- Conventional Troponin Test

Outcome
- Accuracy measure: sensitivity or specificity
Design Key Words

Population
- Chest pain/discomfort
- Emergency room/department

Index Test
- High Sensitivity/sensitive Troponin T/Troponin

Comparison

Outcome
- Acute coronary syndrome
- Myocardial Infarction
EMBASE search function for diagnostic test accuracy studies

- **PICO tools**: can modify the “Intervention” to “Index test”

- **Study types filter**: has a “diagnostic test accuracy study” filter

- These search tools will enhance the specificity of search results at the cost of reduced sensitivity (may miss some studies)
Outline

1. Evaluate the accuracy of a diagnostic test
2. Design of a diagnostic test study
3. Systematic review of diagnostic test studies
4. Quality assessment
5. Interpretation and clinical application
Study Quality Assessment
QUADAS-2

- QUADAS-2
 - Quality Assessment of Diagnostic Accuracy Studies-2 checklist
 - Assesses the quality of studies over four domains
QUADAS-2

- **Patient selection**
 - Study design
 - Sample selection

- **Index test**
 - Blinding
 - Threshold effect

- **Reference standard**
 - Incorporation bias
 - Independence/blinding

- **Patient Flow and Timing**
 - Appropriate time interval
 - Verification bias
DOMAIN 1: PATIENT SELECTION

A. Risk of Bias

Describe methods of patient selection:

- Was a consecutive or random sample of patients enrolled? Yes/No/Unclear
- Was a case-control design avoided? Yes/No/Unclear
- Did the study avoid inappropriate exclusions? Yes/No/Unclear

Could the selection of patients have introduced bias? RISK: LOW/HIGH/UNCLEAR

B. Concerns regarding applicability

Describe included patients (prior testing, presentation, intended use of index test and setting):

Is there concern that the included patients do not match the review question? CONCERN: LOW/HIGH/UNCLEAR

Whiting PF Ann Intern Med 2011
DOMAIN 2: INDEX TEST(S)

If more than one index test was used, please complete for each test.

A. Risk of Bias

Describe the index test and how it was conducted and interpreted:

- Were the index test results interpreted without knowledge of the results of the reference standard? Yes/No/Unclear
- If a threshold was used, was it pre-specified? Yes/No/Unclear

Could the conduct or interpretation of the index test have introduced bias? RISK: LOW/HIGH/UNCLEAR

B. Concerns regarding applicability

Is there concern that the index test, its conduct, or interpretation differ from the review question? CONCERN: LOW/HIGH/UNCLEAR
DOMAIN 3: REFERENCE STANDARD

A. Risk of Bias

Describe the reference standard and how it was conducted and interpreted:

- Is the reference standard likely to correctly classify the target condition?
- Were the reference standard results interpreted without knowledge of the results of the index test?

Could the reference standard, its conduct, or its interpretation have introduced bias?

RISK: LOW / HIGH / UNCLEAR

B. Concerns regarding applicability

Is there concern that the target condition as defined by the reference standard does not match the review question?

CONCERN: LOW / HIGH / UNCLEAR

Whiting PF Ann Intern Med 2011
DOMAIN 4: FLOW AND TIMING

A. Risk of Bias

Describe any patients who did not receive the index test(s) and/or reference standard or who were excluded from the 2x2 table (refer to flow diagram):

Describe the time interval and any interventions between index test(s) and reference standard:

- Was there an appropriate interval between index test(s) and reference standard?
 Yes/No/Unclear
- Did all patients receive a reference standard?
 Yes/No/Unclear
- Did patients receive the same reference standard?
 Yes/No/Unclear
- Were all patients included in the analysis?
 Yes/No/Unclear

Could the patient flow have introduced bias?
RISK: LOW /HIGH/UNCLEAR

Whiting PF Ann Intern Med 2011
Common Study Design Flaws

- Case-control design
 - Exaggerate the accuracy of the test

- Incorporation bias
 - The reference standard includes the index test

- Verification bias
 - Not all participants received same reference standard evaluation
Presentation of Quadas-2 results

<table>
<thead>
<tr>
<th></th>
<th>Risk of Bias</th>
<th></th>
<th></th>
<th>Applicability Concerns</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patient Selection</td>
<td>Index Test</td>
<td>Reference Standard</td>
<td>Flow and Timing</td>
<td>Patient Selection</td>
<td>Index Test</td>
</tr>
<tr>
<td>Angioli 2005</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Brun 2008</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Brun 2009</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Deffieux 2006</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fagotti 2004</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fagotti 2008</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vergote 1998</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

- **High**
- **Low**
- **Unclear**
Outline

1. Evaluate the accuracy of a diagnostic test
2. Design of a diagnostic test study
3. Systematic review of diagnostic test studies
4. Quality assessment
5. Interpretation and clinical application
Principle of Interpretation

• The clinical meaning of the estimated sensitivity and specificity is usually vague

• Interpret the potential consequences of a positive test result and a negative test result in the clinical practice
Background

• Fever is a very common reason for pediatric visits to the emergency department (ED).

• Of these, about 8% may have an occult serious bacterial infection, such as bacteremia, urinary tract infection (UTI), pneumonia, or meningitis.

• Procalcitonin (PCT) has been shown to distinguish bacterial from viral infections
Comparison of the Test Characteristics of Procalcitonin to C-Reactive Protein and Leukocytosis for the Detection of Serious Bacterial Infections in Children Presenting With Fever Without Source: A Systematic Review and Meta-analysis

Procalcitonin test AUC: 0.85

100 hypothetical infants present to the ED with fever, prevalence of severe bacterial infection: 8%

Procalcitonin test
Sen: 84%
Spe: 69%

8 infants with severe bacterial infection

0.84 x 8 = 7 true positives
0.31 x 72 = 22 false positives

Admitted for IV antibiotics treatment

72 infants without severe bacterial infection

0.69 x 72 = 50 true negatives
0.16 x 8 = 1 false negatives

Test positive

Test negative

Follow-up at outpatient clinic

Conclusion

- Systematic reviews of diagnostic test accuracy summarize the accuracy, e.g. the sensitivity and specificity, of diagnostic tests in a systematic and transparent way.