

Reaxys®

Workflow example

Finding reactions of substituted anilines with aryl boronic acids and finding experimental preparations with optimal yields

Workflow concept

Using Reaxys, the scientist wishes to explore the reactions of substituted anilines with aryl boronic acids. They will be looking at experimental preparations to find catalysts and conditions that give the optimal yield.

1. Use the drawing tool in Quick Search to create the reaction

Click on Create Structure or Reaction Drawing in Quick Search.

Reaxys	Quick search Query builder Results Synthesis planner History	0	Ŷ	?
لع Import	Search substances, reactions, documents and bioactivity data in Reaxys Reaxys Medicinal Chemistry, PubChem, eMolecules, LabNetwork and SigmaAldrich			
	Q Reactions, e.g. Suzuki coupling			
	AND			
	Create Structure or Reaction Drawing			

Click Create structure template from name and type "boronic acid". The structure will autopopulate.

ELSEVIER

In the dialog boxes, select Cyclic and Aryl.

Mouse over the "B" and drag left to drag the bond from the atom. Release to drop the "ARY" in place.

Repeat a similar process for aniline derivatives — create the structure, then add the ARY group. Add the reaction information using this function. Finally, click **Transfer to query** and then **Find**.

2. Filter and review the results

Reaxys will return over 5,000 results in response to this query. The reaction information includes yields, conditions and references.

5,255	Filters and Analysis		5,255 Reactio	ONS out of 2,296 Documents containing 7,484 Substances, 1,146	Targets
	By Structure	~	0 selected	· ⊘ ▲ mit To Exclude Export	QO
	Yield	~			
	Reagent/Catalyst	\sim	Reaction ID: 88	94173	
	Solvent	\sim			o ž.o
	Catalyst Classes	~	●		C Q
	Solvent Classes	~	Ŀ. Ø.		
	Product Availability	~	15 Conditio	ns 🔨 Find Similar 🗲	
	Reactant Availability	\sim	Yield	Conditions	References
	Reaction Classes	\sim	99%	With copper diacetate; potassium carbonate; benzoic acid In ethyl acetate at 20 - 80°C;	Wang, XI; Jang, Hye-Young - Bulletin of the Korean Chemical Society, 2012, vol. 33, # 5, p. 1785 - 1787
	Document Type	\sim			Full Text 7 Cited 5 times 7 Details > Abstract >
	Publication Year	~	96%	With Fe ₃ O ₄ magnetic nanoparticles-supported EDTA-copper(II) complex In water at 50°C; for 2h; Green chemistry;	Mostafalu, Ramin; Kaboudin, Babak; Kazemi, Foad; Yokomatsu, Tsutomu - RSC Advances, 2014, vol. 4, ₩ 90, p. 49273 - 49279 Full Text 7 Cited 10 times 7 Details > Abstract > Feedback Ç

To narrow the search down to reactions associated with experimental procedures, use the **Filter and Analysis** panel. Click on **Product availability** and choose **all prods prep known**.

			1				
5,255	Filters and Analysis Limit to > Exclude > Yield	~	0 selected	Sout of 2,296 Documents containing 7,484 Substances, 1,146 C	Targets QO Q Sort by Reaxys Ranking ↓ ∨		
· · · ·	neio	~					
	Reagent/Catalyst	~	Reaction ID: 88	94173			
	Solvent		1				
	Catalyst Classes	~					
	Solvent Classes	~ <	4 H,C	$H_{0}^{\circ} \longrightarrow H_{0}^{\circ} H_$			
	Product Availability 1	^					
	all prods prep known 🛛 🛑	4,010	15 Conditio	ns 🔨 Find Similar 🗲			
	all prods for purchase	1,181	Yield	Conditions	References		
	no prep, no prods for purchase	38	99%	With copper diacetate; potassium carbonate; benzoic acid in ethyl acetate at 20 - 80°C;	Wang, XI; Jang, Hye-Young - Bulletin of the Korean Chemical Society, 2012, vol. 33, # 5, p. 1785 - 1787		
	all prods for purchase	26			Full Text 7 Cited 5 times 7 Details > Abstract >		
	or prep known		96%	With Fe ₃ O ₄ magnetic nanoparticles-supported EDTA-copper(II) complex			
	Reactant Availability	\sim		In water at 50°C; for 2h; Green chemistry;	RSC Advances, 2014, vol. 4, # 90, p. 49273 - 49279 Full Text → Cited 10 times → Details → Abstract → Feedback ↓		

This returns 4,000 results where an experimental procedure is known.

4,010	Filters and Analysis		H_N	$_{B}$ + $_{B}$ \longrightarrow	-j0			
5,255	By Structure	~	Br	но	0			
	Yield	~	$\mathbb{R} \otimes_1$	₽Ø1	\mathcal{O}_1			
	Reagent/Catalyst	~	6 Conditions A Yield Cond	Fild Similar 🗲	References			
	Solvent	~	85% With	tetrak (triphenylphosphine) palladium ⁽⁰⁾ ; potassium carbonate in				
	Catalyst Classes	~			Kim, Hyun Dong; Uhm, Song Jin; Lee, Ju Dong - KR2016/1508, 2016, A Location in patent: Paragraph 0156-0159			
	Solvent Classes	~	Exper	Experimental Procedure Full Text 7 Details > Abstract > compound 2,4-dibromo-6-fluroaniline (2,4-dibromo-6-fluroaniline) 40 g (149 mmol),phenylboronic Acid (Phenylboronic acid) 39,9 g (327				
	Product Availability	4,010		mmol), Tetrakis (triphenylphosphine) palladium (0), 8:59 g (7:44 mmol), K2CO3 82 g (595 mmol), Toluene (Toluene) 600 mL, H2O 150 mL Put the nitrogen was replaced. 24 hours of reaction at 100 degree and Distilled water and dichioromethane (MC), and extracted using NaCL. With a rotar evaporator after the organic layer was dried over anhydrous MgSO4After removal of the solvent hexane (Hexane); dichioromethane (MC) = 20: 1 using a column chromatography (columnPurification by chromatography) to obtain 32.9 g of the desired compound 2-3 (85percent).				
	Reactant Availability	~		tetrakis(triphenyiphosphine) palladium ⁽⁰); potassium carbonate In ; toluene for 12h; Reflux;	CHOS; VARMAN, HATHIYA - KR2015/124677, 2015, A			
	Reaction Classes	~	Exper	imental Procedure 🤝	Location in patent: Paragraph 0256; 0261-0264 Full Text A Details > Abstract >			
	Document Type	~		potassium carbonate; tetrakis(triphenylphosphine) palladium $^{(0)}$ In ydrofuran; water at 70°C; for 5h;	Samsung Mobile Display Co., Ltd EP2447250, 2012, A1 Location in patent: Page/Page column 42 Feedback C			

Further filtering is possible using the Yield, Reagent/Catalyst and Solvent filters.

When a yield range is selected in the **Yield** filter (selections become orange), some of the options under **Reagent/Catalyst** and **Solvent** will turn green. This indicates that these are the most likely to give the selected yield.

When the selection is made, click Limit to to view the results with the selected conditions.

Filters and A	Analysis
Limit to >	Exclude >

Note that results can be exported. Select the appropriate format, range and other options to ensure that the exported results are suitable for use in the intended cheminformatics tools.

Export reactions R	eaxys		
Choose a format:	PDF/Print	~	
Range:	Selected - 1	~	
Export:	All available data Identification data only Hit data only		
Additional options:	 Include structures Include experimental pro Include a description in t 		

Further information on using Reaxys can be found in the user guide in the Reaxys Support Center.

REAXYS is a trademark of RELX Intellectual Properties SA, used under license. Copyright $\textcircled{}{}^{\odot}$ 2017, Elsevier B.V.