Best practices for validating literature monitoring searches

Presented by Júlio dos Anjos
November 22, 2017
Agenda

• Literature Monitoring: Why?
• Literature Monitoring: Challenges.
• Using A&I databased to monitor literature
• Building and Validating the Search Formula
 - Scenario with existing Gold set
 - Scenario without Gold set
 - For Investigational New Drugs
• Periodic review
• Caveats
• Q&A time
Literature Monitoring: Why?
Safety information from spontaneous and literature adverse reactions reports may differ

<table>
<thead>
<tr>
<th>Drug Substance</th>
<th>System Organ Class</th>
<th>Literature Cases (%)</th>
<th>Spontaneous Cases (%)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylsalicylic Acid</td>
<td>Nervous System Disorders</td>
<td>25.6</td>
<td>8</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal Disorders</td>
<td>8.4</td>
<td>25.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Injury, poisoning, complications</td>
<td>35.9</td>
<td>7.5</td>
<td>28.3</td>
</tr>
<tr>
<td>Alendronic acid</td>
<td>Gastrointestinal disorders</td>
<td>4.6</td>
<td>21.0</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>Injury, poisoning, complications</td>
<td>28.3</td>
<td>5.4</td>
<td>22.9</td>
</tr>
<tr>
<td>Tamsulosin</td>
<td>Injury, poisoning, complications</td>
<td>50</td>
<td>4.1</td>
<td>45.9</td>
</tr>
<tr>
<td>Etoposide</td>
<td>Congenital, familial, genetic</td>
<td>0</td>
<td>24.3</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Safety information from spontaneous and literature adverse reactions reports may differ

<table>
<thead>
<tr>
<th>Drug Substance</th>
<th>System Organ Class</th>
<th>Literature Cases (%)</th>
<th>Spontaneous Cases (%)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylsalicylic Acid</td>
<td>Nervous System Disorders</td>
<td>25.6</td>
<td>8</td>
<td>17.6</td>
</tr>
<tr>
<td>Acetylsalicylic Acid</td>
<td>Gastrointestinal Disorders</td>
<td>8.4</td>
<td>25.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Injury, poisoning, complications</td>
<td>35.9</td>
<td>7.5</td>
<td>28.3</td>
</tr>
<tr>
<td>Alendronic acid</td>
<td>Gastrointestinal disorders</td>
<td>4.6</td>
<td>21.0</td>
<td>16.5</td>
</tr>
<tr>
<td>Alendronic acid</td>
<td>Injury, poisoning, complications</td>
<td>28.3</td>
<td>5.4</td>
<td>22.9</td>
</tr>
<tr>
<td>Tamsulosin</td>
<td>Injury, poisoning, complications</td>
<td>50</td>
<td>4.1</td>
<td>45.9</td>
</tr>
<tr>
<td>Etoposide</td>
<td>Congenital, familial, genetic</td>
<td>0</td>
<td>24.3</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Safety information from spontaneous and literature adverse reactions reports may differ

<table>
<thead>
<tr>
<th>Drug Substance</th>
<th>System Organ Class</th>
<th>Literature Cases (%)</th>
<th>Spontaneous Cases (%)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylsalicylic Acid</td>
<td>Nervous System Disorders</td>
<td>25.6</td>
<td>8</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal Disorders</td>
<td>8.4</td>
<td>25.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Injury, poisoning, complications</td>
<td>35.9</td>
<td>7.5</td>
<td>28.3</td>
</tr>
<tr>
<td>Alendronic acid</td>
<td>Gastrointestinal disorders</td>
<td>4.6</td>
<td>21.0</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>Injury, poisoning, complications</td>
<td>28.3</td>
<td>5.4</td>
<td>22.9</td>
</tr>
<tr>
<td>Tamsulosin</td>
<td>Injury, poisoning, complications</td>
<td>50</td>
<td>4.1</td>
<td>45.9</td>
</tr>
<tr>
<td>Etoposide</td>
<td>Congenital, familial, genetic</td>
<td>0</td>
<td>24.3</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Safety information from spontaneous and literature adverse reactions reports may differ

<table>
<thead>
<tr>
<th>Drug Substance</th>
<th>System Organ Class</th>
<th>Literature Cases (%)</th>
<th>Spontaneous Cases (%)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylsalicylic Acid</td>
<td>Nervous System Disorders</td>
<td>25.6</td>
<td>8</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal Disorders</td>
<td>8.4</td>
<td>25.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Injury, poisoning, complications</td>
<td>35.9</td>
<td>7.5</td>
<td>28.3</td>
</tr>
<tr>
<td>Alendronic acid</td>
<td>Gastrointestinal disorders</td>
<td>4.6</td>
<td>21.0</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>Injury, poisoning, complications</td>
<td>28.3</td>
<td>5.4</td>
<td>22.9</td>
</tr>
<tr>
<td>Tamsulosin</td>
<td>Injury, poisoning, complications</td>
<td>50</td>
<td>4.1</td>
<td>45.9</td>
</tr>
<tr>
<td>Etoposide</td>
<td>Congenital, familial, genetic</td>
<td>0</td>
<td>24.3</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Guidance by authorities

<table>
<thead>
<tr>
<th></th>
<th>EMA</th>
<th>FDA</th>
<th>CIOMS</th>
<th>ICH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of screening literature</td>
<td>At least weekly</td>
<td>Not specified</td>
<td>Monthly</td>
<td>According to local requirements or at least bi-weekly</td>
</tr>
<tr>
<td>Which Literature to screen?</td>
<td>Scientific and medical literature</td>
<td>Scientific literature</td>
<td>Discusses all terminology used by different Regulators</td>
<td>Worldwide literature</td>
</tr>
<tr>
<td>Reporting requirements</td>
<td>Serious and non-serious</td>
<td>Serious and unexpected</td>
<td>Expedited reporting being discussed</td>
<td>Day 0 is when Medical safety information is identified</td>
</tr>
<tr>
<td>Exclusions</td>
<td>No</td>
<td>Yes</td>
<td>Not applicable</td>
<td>Brand or trade name</td>
</tr>
</tbody>
</table>
Literature Monitoring: Challenges
What are the biggest challenges with Literature Screening?

- Differences in Regulations
- Building an Ideal Search Strategy
- Large Volume of Scientific Literature
- Inspections/Audits
- Monitoring Local Language Journals
- Implementing EMA MLM Results
What are the biggest challenges with Literature Screening?

- Differences in Regulations
- Building an Ideal Search Strategy
- Large Volume of Scientific Literature
- Inspections/Audits
- Monitoring Local Language Journals
- Implementing EMA MLM Results
What are the biggest challenges with Literature Screening?

- Differences in Regulations
- Building an Ideal Search Strategy
- Large Volume of Scientific Literature
- Inspections/Audits
- Monitoring Local Language Journals
- Implementing EMA MLM Results
Challenges in Literature screening for PV: *Increasing amount of scientific literature*

Number of records in Embase per Year (in millions)

Data retrieved from www.Embase.com
What are the biggest challenges with Literature Screening?

- Differences in Regulations
- Building an Ideal Search Strategy
- Large Volume of Scientific Literature
- Inspections/Audits
- Monitoring Local Language Journals
- Implementing EMA MLM Results
Using A&I databases
What can you do?

Read all literature – Impossible

Use an A&I database

• Read all PubMed – Impossible
• Read all Embase – Impossible
What can you do?

Remaining option:

• Find and read **only relevant records** from literature (A&I) databases
• Read **the articles these records** represent
Building the search
Objective:

For any given A&I database that you use:

• Build a search formula that
 - Retrieves all ADR/AE records
 - Retrieves as few as possible non-ADR/AE records

• Validate the search formula
Validate the formula: Why?

- You must be ready to answer: “Why use this formula and not another”, with documented procedures and results…

- “Establishing documented evidence which provides a high degree of assurance that a specific search formula will consistently produce a record set meeting its predetermined specifications and quality attributes”
Quality attributes of a search formula:

• **Precision**: How many of the records in the result set are relevant to my need (and, as a consequence, how many are not relevant).

• **Recall**: From all records that are relevant to our need, how many are present in the search result, and how many, if any, are relevant, **but the search formula failed to capture**.
Quality attributes of a search formula:

- In PV we want a **Recall** of 100%: NO RECORDS indicating that an ADR is present in the article, are missed by the search formula.

- **Precision** will impact productivity: Low values mean too much noise is coming in: irrelevant records to review. But it can’t be increased at the cost of **Recall**.
Validating the Search Formula
Building and Validating the Search: How

Scenarios:

I: You have previous information about articles that contain AE’s: **a Gold set**

II: You have **no Gold set**.

III: It’s a new investigational drug, no articles exist

Aspects:

• Formula creation

• Risk Assessment of outliers

• Regular Review of Formula
Scenario I: A Gold set exists
Step 1: Gather a Gold set

You have previous information about articles that contain ADR/AE’s

Create a Gold set from all known relevant articles

- For a limited timebox. Ex: 2014-2016
- Extract no less than 150 Articles
- Extract no more than SQRT(N)+1
 where N = Total amount of records from 2014 to 2016
- Locate the records for all articles in the A&I database
Graphical representation

- All database records for 2014-2016
Locate Gold set records
Isolate records for articles in Gold set
Split it in 3 sets: A-B-C
Step 2: Build a formula for set A

- Locate the records for each article in set A.
- Find commonalities in all records.
Step 2: Build a formula for set A

- Build the search formula from this analysis.
Step 2: Build a formula for set A

• Build the search formula from this analysis.
Step 3: Review formula with set B

- Apply search formula to database
- Are all records from set B in result?
Step 3: Review formula with set B

- Apply search formula to database
- Are all records from set B in result?
Step 3: Review formula with set B

- Review those not in the result.
- Revise search formula
Step 4: Review formula with set C

- Apply search formula to database
- Are all records from set A and B in result?
Step 4: Review formula with set C

- Are all records from set C in result?
- Review those not in the result.
Step 4: Review formula with set C

- Revise search formula
Step 4: Review formula with set C

- Apply search formula to database
- Are all records from set A, B and C in result?
We now have a formula!

- First: Are there new ADR’s detected?
- Second: Can the Precision be increased?
Step 5: Any new ADR’s detected?

• Review all records in result not in set A, B or C.
Step 5: Any new ADR’s detected?

- Are there records that inform an ADR?
Step 5: Any new ADR’s detected?

- Get the articles, review the articles, inform Safety of any positive findings
Step 6: Increase Precision

- Having achieved 100% Recall we may want to increase Precision.

This formula recovers 105 Records

31 Records contain ADR information

Precision = 30%

74 Records are irrelevant
Step 6: Increase Precision

- After reviewing some formula segments…

If any change hides a record with an ADR then backtrack the change
Step 6: Increase Precision

• We can eliminate some results.

This formula recovers 94 Records, not 105.

This formula recovers 105 Records, not 94.

31 Records contain ADR information.

Precision = 30%–33%.

74 63 Records are irrelevant.

10% increase in productivity.
Step 7: Verify outliers

• This article has an ADR, **but the record does not**. This is result of the database not being indexed for ADRs
Step 7: Handle outliers

• Document the absence of information on the record.
• Perform **risk assessment** on the ADR:
 - Is the ADR new?
 - Is the ADR serious?
 - Was it reported by HCP?
• If the ADR/AE is NEW then, probably, this would be secondary subject of the record indexing. The same for seriousness.
• Document findings.
Recap: Gold set exists

• 1: Gather a Gold set
 Split into 3+ set (A,B,C)
• 2: Build a formula that retrieves all records on set A
• 3: Apply to set B, review formula to retrieve all missing records
• 4: Apply to set C, review formula to retrieve all missing records
• 5: Review other records retrieved for new ADR's
• 6: Increase precision, never losing recall
• 7: Verify, and document, outliers
Scenario II: No Gold set exists
Scenario II: No Gold set exists

Build your own, with help from PV Wizard(*).!
Scenario II: No Gold set exists

Build your own, with help from PV Wizard(*)!

• Execute the PV Wizard for the product

• Execute a search for all records that mention the product

• From this EXCLUDE the PV Wizard results

• Verify everything that remains (or a sample of it)

• Change PV Wizard if necessary
Scenario II: No Gold set exists

- For a timebox of 2 years.
Scenario II: No Gold set exists

- For a timebox of 2 years.
- Find PV Wizard results for your product
Scenario II: No Gold set exists

- For a timebox of 2 years.
- Find PV Wizard results for your product
- Find all results for your product
Scenario II: No Gold set exists

- Find PV Wizard results for your product
- Find all results for your product
- Find the *delta*
Find PV Wizard results for your product

• Review all records in the *delta*
 If the delta is too large (> 150-200) records review only a sample, ex: \(\text{SQRT}(\text{delta}) + 1 \)
Scenario II: No Gold set exists

• If records with ADR’s are found then
 Change search formula suggested by PV Wizard in order to also recover these records
Scenario II: No Gold set exists

• If records with ADR’s are found then Change search formula suggested by PV Wizard in order to also recover these records
Scenario II: No Gold set exists

• If records with ADR’s are found then
 Change search formula suggested by PV Wizard in order to also recover these records
• You can try to increase precision (see scenario 1).
Scenario III: IND
SCENARIO III: Investigational New Drug

- Review all records that mention the IND using a simple formula.
- Volume of results will decide when Precision needs to be increased.
- At this point a complex formula is required: proceed with the process for scenario I, as a Gold set has been collected.
Periodic Review of Search formula
Review regularly: Why?

- A&I databases change
- New search artefacts are introduced
- New indexing policies are enforced
- ISO 9001: Continuous Improvement

Always perform the review maintaining documented evidence which provides a high degree of assurance that the new search formula will consistently produce a record set meeting its pre-determined specifications and quality attributes.
Review regularly: How?

- Option 1: Review all unexamined records
Review regularly: How?

- Option 1: Review all unexamined records
- Option 2: Review $\text{SQRT(}unexamined\text{)} + 1$ records
Review regularly: How?

- A few outliers may be identified.
- A few new search directives may be identified.
- Add these new directives to your formula going forward.
Shortcomings
because any document can, in principle, provide answers to an infinity of questions, subject analysis should establish priorities based on the specific user groups served (or specific services provided in the information ecology). [...] The best subject analysis is the one that makes the best prognosis of the future use of the document.

• The indexers are not indexing for ADR detection purposes
 You can’t query an A&I database for “Show me all relevant articles for PV purposes for drug X”.

• If an ADR is not relevant to the main topic of the article… there may be no reference to the ADR in the record
Q & A time
For PV Wizard

See webinar:

• Best practices for pharmacovigilance & literature monitoring
 https://attendee.gotowebinar.com/recording/4680593895774109185
 July 2017
Thank you for your attention

Júlio dos Anjos
Senior Product Development Manager
✉️ J.dosAnjos@elsevier.com
LinkedIn janjos